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The method of matched asymptotic expansions is used to simplify calculations of 
noise produced by aerodynamic flows involving small perturbations of a stream of 
non-negligible subsonic Mach number. This technique is restricted to problems 
for which the dimensionless frequency 6, defined as wb/a,, is small, o being the 
circular frequency, b the typical body dimension, and a, the speed of sound. By 
combining Lorentz and Galilean transformations, the problem is transformed to 
a space in which the approximation appropriate to the inner region is found to be 
incompressible flow and that appropriate to the outer, classical acoustics. This 
approximation for the inner region is the unsteady counterpart of the Prandtl- 
Glauert transformation, but is not identical to  use of that transformation in a 
straightforward quasi-steady manner. For wings in oscillatory motion, it is the 
same approximation as was given by Miles (1950). 

To illustrate the technique, two examples are treated, one involving a pulsating 
cylinder in a stream, the other the impinging of plane sound waves upon an 
elliptical wing in a stream. 

Introduction 
The method of matched asymptotic expansions has been applied to a class of 

problems of aerodynamic noise by Muller & Obermeier in a series of papers 
(Miiller & Obermeier 1967, Obermeier 1967a, b) .  The category of problems treated 
bythem involves, as the significant small parameter, the Mach number of the aero- 
dynamic flow that produces the sound field, or, what is equivalent, the ratio of 
the characteristic wavelength of the aerodynamic motion to the acoustic wave- 
length of the sound produced. The power of the Muller-Obermeier technique lies 
in its ability to handle complicated aerodynamic flows, such as those that do 
not fall within any small-perturbation category. Besides this advantage, their 
method might be said to formalize an approximation that has seemed intuitive 
to earlierinvestigators (e.g. Lamb 1932, pp. 500,531), i.e. touse anincompressible 
flow approximation to the aerodynamic flow and to join it at  greater distances to 
a classical acoustic field. But this evaluation of the Muller-Obermeier method 
would overlook the important fact that it also provides a composite solution 
that is superior in accuracy to either the inner (incompressible) or outer (acoustic) 
approximation alone. 
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In  this paper we shall exploit the matched asymptotic expansions in a some- 
what different way, confining ourselves to small-perturbation flows and dis- 
pensing with the limitations to small Mach numbers. The small parameter, 
which determines ‘inner ’ and ‘outer ’ regions requiring different expansions, will 
now be the ratio of body dimension (or equivalent characteristic length) to the 
acoustic wavelength. Since, in principle, a small-perturbation problem can 
always be treated by acoustic methods, e.g. by distributions of acoustic singulari- 
ties (Lighthill 1962), our approximation, which seems to be new, is only a labour- 
saving device. We find, however, that in a variety of problems, some of which we 
shall present here as examples, the amount of labour saved is considerable, and 
often results are obtained that possess all the accuracy that is desired. 

Theory 
We begin our treatment, therefore, with the equation that describes small 

perturbations of a uniform, inviscid, compressible stream whose Mach number is 
M and whose speed of sound is a,; this well-known equation is 

where $ is the perturbation velocity potential and the x axis lies in the direction 
of the undisturbed stream. A technique for finding solutions of this equation was 
employed by Kussner (1940) (see also Sears 1954, 1960); it consists of making a 
Galilean transformation in order to reduce (1) to the wave equation and then a 
Lorentz transformation, which does not alter the wave equation but re-intro- 
duces the relative motion of the stream and the sound-producing elements, such 
as bodies. 

Let the Galilean transformation be 

x’ = x-Ma,t, y‘ = y, z’ = z, t’ = t ,  (2) 

and the Lorentz transformation be 

1 x = (x’+Huot’)//3, Y = y‘, 2 = z‘, 

T = (~’+NZ‘/U,)//~, 
(3) 

where p2 denotes 1 - M 2 .  
Combining these transformations, we find 

x = /3X, y = Y ,  z = 2, t = ( T - M X / a , ) / P .  (4) 

( 5 )  
1 

and, as stated, - $TT = $ X X  -k $YY + $ Z Z .  
a; 

The pressure perturbation p -po, which we shall call Sp, is easily found to be 

Sr, = -Po #€, = -Po& + Ma, #a?} 

= -PO{$T $- MaO$X}/P* (6) 

Sound is sometimes produced by motions of solid bodies in the air; for such 
cases the kinematic boundary condition at  the body surface is DFlDt = 0, 
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where the body surface is described by P(x, y ,  x ,  t )  = 0. For slender bodies this is, 
approximately, 

&+MaoFz+$gFu+q5s~ = 0. 

Expressed in the transformed plane, this reads 

(7) 

PTT + J faoW/Pao)  =%-T + P-'Sxl+ $Y gx- + $z 9 2  = 0, 

p-'%$ + p-lMao Sx + q5y  gF + & 9" = 0, or (8)  

where F ( X ,  Y ,  8, T )  = P(x, 9, X ,  t ) .  

In  some problems it will be desirable to interpret boundary condition (8) in 
physical terms in the X ,  Y ,  8, T space. We shall, however, postpone this; for the 
present it must suffice to remark that the transformation we have carried out in 
(a)-( 8) constitutes the generalization of the familiar Prandtl-Glauert trans- 
formation of steady subsonic flow to the unsteady case. It does not lead to a 
much simpler boundary-value problem in the transformed space, in general, and 
presumably that is why it has not been used. In problems of the category that 
we are treating here, however, further simplifications are permissible, as we shall 
now show. 

Our matched-asymptotic-expansion technique is based upon the idea that the 
length that characterizes the region of flow near the body is the body dimension, 
say b, while the length that characterizes the distant parts of the flow is the 
acoustic wavelength, which is 2nao/w if w is the (circular) frequency of the 
motion or the reciprocal of the characteristic time of the motion. We will consider 
problems in which the ratio of these two lengths is small; i.e. 

8 = wb/ao < 1. 

This means that gradients of physical quantities are much greater near the body, 
established as they are by the boundary conditions, and different approximations 
to the governing differential equation are permissible in the two regions. It is 
important to note that these features will occur in both the physical (x, y ,  z, t )  
and the transformed ( X ,  Y ,  2, T )  spaces, according to (4). 

The restriction to ob/ao < 1 is, of course, that of the theory of Lighthill (1962, 
bottom of page 155). 

The process of comparing orders of magnitude, for small 8, of the terms of 
( 5 )  is simple and is most easily accomplished by introducing dimensionless 
variables (Muller & Obermeier 1967), referring the spatial co-ordinates to b in an 
inner region and to b/e  in an outer region. The result, for the inner region, is 

pix + &Y + pzz = o(€2). (9) 

For the outer region (5) remains unchanged, since all of its terms are of the same 
order in 8. 

Thus, neglecting terms of order e2 in comparison with 1, one employs an 
incompressible-flow approximation in the inner region of the X, Y ,  8, T space, 
and matches it to the acoustic approximation in the outer region. Recalling the 
transformation used, (4), we see that the approximate differential equation for 
the inner region of the original x, y, x ,  t space is the Prandtl-Glauert equation. 
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Nevertheless, the approximation being suggested for this region is not just a 
straightforward quasi-steady Prandtl-Glauert approximation. The difference is 
that T and not t appears in our boundary condition, (8). On the body surface, 
T and t differ by quantities of order E, which would be omitted in a 'straight- 
forward quasi-steady approximation '. 

We see that, for problems involving small e, there is a useful extension of the 
Prandtl-Glauert method to unsteady flows. We therefore proceed to interpret 
the transformed boundary-value problem, as promised above. To do so, one must 
multiply (8) by p, to give 

S T + M a , S x + / @ , S y f / 3 ~ , S z  = 0. (10) 

This is the boundary condition for flow at speed Ha, past the Prandtl-Glauert- 
stretched body S = 0, provided that /3q5 is the perturbation velocity potential. 
The body is performing a distorted version of the motion of the original body in 
time, because T is T(z,  t )  according to (4). The boundary-value problem for the 
region near the body is therefore the problem of incompressible flow at speed Ma, 
past this unsteady thin body. 

All this is not quite new. Miles (1950) studied the matter of the ' compressibility 
correction' for wings oscillating sinusoidally in subsonic flow. Although his 
derivation is rather different from ours, relates specifically to sinusoidal oscilla- 
tions of planar bodies, and is expressed in different terminology, it seems clear 
that his 'correction rule' is the same as what we have derived here. 

With this conhnation of our conclusions for the inner region, we are ready to 
proceed with the matching of inner and outer approximations, which we shaIl 
carry out in two illustrative examples. There is, however, one more detail to be 
accomplished in order to facilitate this matching, namely to introduce appropriate 
dimensionless co-ordinates for the respective regions. Let 

The differential equation for 'pi is then Laplace's equation in the e, qi, 
neglecting O(c2),  while the differential equation for yo, from (5), becomes 

space, 

cp;, = v2qopo, (121 

where the right-hand side is the Laplacian in the p, yo, 6 space. 

Examples 
Noise produced by a pulsating cylinder in a stream 

As our first example, let us treat the two-dimensional case of a symmetrical thin 
cylinder pulsating symmetrically in a stream.'Let its ordinates be given by 

y = fbg(x)eimt for -b  < x < b, (13) 



The aerodynamic noise of small-perturbation subsonic flows 231 

so that boundary condition (7) is simply 

v(x, y, t )  = (iwg(x) + Ma,g'(x)) b eiwt (14) 

(for the upper surface), where w denotes q$ and, for the thin cylinder, v(x, y, t )  is 
to be replaced by v(x, + 0, t ) .  Thus, the boundary condition in the X ,  Y ,  T space, 
(8)' is V ( X ,  + 0, T) = { iwg(pX) + Maog'(/3X)} b exp {iw(T - MX/u,)//3} (15) 

for - b/P < X < b/P, where V denotes &. 
The perturbation potential for the inner region can be written down immedi- 

ately, for the solution of Laplace's equation that satisfies this boundary condition 
at the slit - b/P < X < b/P, Y = f 0, is obtained by a distribution of sources of 
strength 2 V ( X ,  + 0, T), as is well known; thus 

This is the inner approximation. To match it to the outer, it is necessary to 
expand it in a form appropriate for large ri and express the result in terms of r O ;  

this yields the approximate expression for the outer solution for small r0 (Van 
Dyke 1964). In  the interests of brevity, we shall not reproduce the details of this 
expansion. (It is facilitated by integrating by parts the term containing g'.) 
The result is, neglecting O(G),  

1 
((p0)i = ((pi)" = 7Tp2 ei7/+1(i/~) 1nF + 2~501r021 

where A denotes 

and B denotes I b  g(x)xdx/b. 
- b  

According to (17), the inner flow field, at its outer edges, is equivalent to an 
oscillating source, dipole, and quadrupole. In this embodiment, Van Dyke's 
matching procedure simply calls for the replacement of these three incompressible 
singularities by the corresponding acoustic ones : 

where the coefficients are determined from (17) by use of the expansions of the 
Bessel functions for small argument; they are found to be 

Cl = - +Alp3 + $i€BM/P5, 
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The solution is now complete; 'pi and 'po can be put back into dimensional form, 
brought back into the original x,  y, t space, and the composite solution, valid for 
all r ,  can be formed according to the formula 

$tJ = qF+$O-(qF)". (20) 

ReJEexion of sound waves from a wing in a stream 

As our second example let us consider plane sound waves impinging upon a wing. 
Let their direction of propagation be normal to the plane of the wing as sketched 
in figure 1. We think of this as an idealization of practical problems relating to the 
effectiveness of a wing as a baffle against sound propagation. While many 
problems have been solved involving such sound baffles in air at  rest, we believe 
that the corresponding phenomena in the presence of a stream at non-negligible 
Mach number are not known. 

' t  n Direction of sound 
propagation I 

X 

FIGURE 1 

We shall consider here an elliptical wing whose major and minor axes are of 
length b andpb, respectively. This particular choice of dimensions has the obvious 
advantage that the wing becomes circular in the X, Y ,  2, T space. 

Suppose the propagating sound waves have frequency 131277; the incident 
perturbation field is then described by 

= A exp [iw(t + x/ao)], (21) 

and we shall assume again that e = &/ao < 1, so that our method of matched 
asymptotic expansions is applicable. 

Let 9 denote the additional velocity potential due to the presence of the wing; 
the boundary condition for q5 is then the condition that a$tJ/ax cancel the impinging 
perturbation velocities at  x = 0 on 8; i.e. 

q5Jx, y, 0, t )  = - (Aiw/ao) exp (iwt) on S (22) 

(23) and 

within the circle of radius b and centre a t  the origin in the X ,  Y plane. 

&(X, Y ,  0, T) = - (Aiwla,) exp [iw(T - NX/a,) /P] 
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Although, in principle, we could carry the terms of order 6 in this boundary 
condition, as in the preceding example, we propose to neglect them here for 
simplicity. This means that we omit the term M X / a ,  in (23), whereupon the 
boundary condition becomes #z = - (Aimla,) exp (id!) in the circle. The soh- 
tion of this potential problem is available (Lamb 1982, p. 144) : viz. 

(24) I (pi = -2(iA/aOb)ei'/8[tan-l(1/8)- l/O]P, 
82 = - 6 + &- i2{  1 + (1 - 2/ri2 + 1lrJ* + 4p2/ri4)6) where 

and other notation is the same as in (1 1). 
The expansion of this solution for large ri is 

((pi)" = (2iA/3ma0b) (p/r is)  ei7/j. (25) 

Hence, the matching procedure calls only for an acoustic dipole for the outer 
flow field in this case. It is found to be 

cpo = - (2A/3ma0b) (e2P/ro2) [1/,8-i/ro]ei(7Lpo)/~ (26) 

or, when expressed in dimensional form and returned to the x, y ,  x ,  t space, 

where 
Again the calculation is to be completed by forming the composite solution, 

@+@- (@)", and subsequently the pressure by means of the first of (6). The 
latter is a tedious calculation, and we shall not carry it out here, but turn instead 
to a more interesting subject. 

denotes {x2 + p2((yz + za)}!~. 

T h e  eflect of circulation about the wing 
The solution obtained above is the one that involves no circulation about the 
wing. This was correct in Lamb's problem, the solution to which was exploited 
above, for reasons of symmetry. But the problem being attacked here is not 
symmetrical; the elliptical wing possesses leading and trailing edges, and one 
must ask whether fluctuating circulation would not be produced by the velocity 
fluctuations q& of (22). 

For sufficiently high frequencies (large enough e), this question might be moot, 
but, since we are considering only small e and subsonic flow, we believe that the 
answer is clear: circulation would be produced, and the Kutta-Joukowsky 
condition provides an approximation to determine its magnitude. Shen & 
Crimi (1965), among others, have considered the question of the limits of validity 
of the Kutta-Joukowsky condition, by treating an oscillating airfoil in a viscous 
fluid. Their conclusion is that as long as the 'reduced frequency', which is e /M in 
our notation, is less than or equal to 1 the classical Kutta-Joukowsky condition 
should be applied at every instant. Their criterion is satisfied in the case we are 
treating. 

The solution obtained above is therefore deficient and must be augmented by 
consideration of the effects of fluctuating circulation about the wing. This 
affords an opportunity to demonstrate further the utility of our method of 
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approximation, for it serves to relate this problem to one of an oscillating wing 
with circulation in an incompressible flow. For example, the fluctuating lift of a 
circular wing carrying out oscillations perpendicular to its plane has been calcu- 
lated, in the unsteady-thin-airfoil approximation, by Schade & Krienes (1947). 
We shall now show how this result (the lift) alone can be used to approximate to 
the sound field. Actually, the sound field that results from this fluctuating lift is 
an order of magnitude larger than what we have calculated above. 

It may be of value to review our theory at this point and to relate what will 
follow to  the general philosophy adopted previously. So far, our method has been 
to concentrate on the perturbation velocity potential q5 and to construct its 
composite approximation by matching its inner and outer forms. This procedure 
has been adopted because of the fact that aerodynamic flows are usually de- 
scribed in terms of q5 or its derivatives and their boundary conditions are usually 
given in these terms. It is also possible to work directly with the pressure per- 
turbation Sp; in the small-perturbation cases we are treating, it satisfies the same 
differential equations as does q5. If the fluctuating force is given, as in the problem 
we are now attacking, it will be the more convenient quantity to use, as Lighthill 
(1962) has done. What we want to  make clear is that to obtain inner and outer 
approximations to Sp and to construct from these a composite solution is equiva- 
lent to doing the same for q5. 

Now, the problem of the reflexion of plane sound waves by an elliptical wing 
has been reduced, above, to a harmonic boundary-value problem in X ,  Y ,  2, T ,  
with the boundary condition given in (23), and subsequent matching to an 
acoustic field. The Schade-Krienes calculation represents a solution of this 
harmonic boundary-value problem, but it does not give us q5 in detail, only the 
resulting lift. It is interesting to  notice that, whereas $ is independent of the 
stream speed (as are the results given in (24)-(26)) the lift surely depends on this 
parameter; so does the pressure perturbation. According to ( 6 ) ,  we want to 
consider the oscillating wing in a stream of speed Ma,, and then carry the 
pressure perturbation back to x, y, x ,  t in the manner prescribed by (6), i.e. with a 
factor 1/p. Thus, the Schade-Krienes problem that is pertinent to our problem is 
that of a circular wing of radius b in an incompressible flow of speed Ma,. In 
(23) we see that it oscillates with frequency w/P.  Schade & Krienes' result can be 

(28) 
expressed as follows : 

where L(T) is the lift and q5,(T) denotes the value of 4, on the wing, which is 
given by (23). Again, we shall neglect O(B) ,  which means that we omit the term 
M X / a ,  in (23). Thus, L(T) has the form Kexp ( iwt /P) .  

The flow field in X ,  Y ,  2, T, at large T$,  is therefore the field due to an oscillating 
concentrated force of this magnitude. The corresponding pressure-perturbation 
field is known (Lighthill 1962) to be that of a pressure-dipole. Let the pressure 
perturbation in X ,  Y ,  8, T be denoted by SP, so that Sp = SP/p; then 

L(T) = - 2*813/1,MaOb~$,(T), 

( 6 P ) o  = (K6/4nb2ri3) $7/P. (29) 

SPO = (iK/4nb2) [1//- (30) 

The outer approximation is therefore a corresponding acoustic pressure-dipole : 



The aerodylzamic noise o j  small-perturbation subsonic flows 235 

Let us carry this pressure-perturbation formula back to the x, y, z, t space, 
express it in dimensional co-ordinates, and write out the constant K ,  which is 
2-8130,Mb2Aiw. The result is 

I "  

Sp0 = 

which is consistent with a result of Lighthill (1962, p. 165). 
At large radii, this contribution to the pressure field is O(e2), whereas the 

pressure perturbation derived from (27), without wing circulation, is found to be 
O(e3). Unfortunately, our calculation has not provided us with an inner approxi- 
mation corresponding to (31). The efficacy of the wing as a noise baffle has to be 
deduced from (31) for small r . ~  (where, of course, the approximation of (29) holds). 
Curves of constant pressure-amplitude in the combined field of the impinging 
waves and the wing effect are, roughly, dipole-like loops above and below the 
wing. The effect seems rather small, since the amplitude is affected only about 1% 
at distances of about ,/( 10) b above and below the wing. 

This work has received partial support from the Mechanics Branch, Office of 
Scientific Research, U.S. Air Force. 
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